摘要

将粗糙集和支持向量机两种理论相结合应用于水泥回转窑的小样本故障诊断。首先介绍了粗糙集(RS)理论和支持向量机(SVM)理论的基本理论知识,然后将RS理论应用于水泥回转窑故障信息的知识约简,再利用SVM理论对RS理论约简后的数据进行训练和分类。这种融合之后的诊断方法不仅充分发挥了两种理论的优点,同时克服了SVM对冗余信息和有用信息识别的局限性,有效地降低了SVM的输入信息空间维数,弥补了RS理论法对输入信息中的噪声敏感、抗干扰能力差的缺点,有效地提高了诊断的效率和准确率。