摘要
针对苹果叶部病害程度识别准确率低的问题,构建了一种基于快照集成方法的苹果叶部病害程度识别模型。首先,通过多种数字图像处理技术对原始苹果叶部病害图像进行数据增强;然后,选取Inception-ResNet V2作为基模型,引入CBAM模块提升网络的特征提取能力,使用焦点损失函数缓解苹果叶部病害数据集类别不平衡问题;最后,通过快照集成方法进行模型集成,得到苹果叶部病害程度识别模型。利用苹果黑星病和锈病的早期和晩期病害数据集进行了模型验证,准确率高达90.82%,比单一Inception-ResNet V2模型的准确率提高了2.50个百分点。实验结果表明,基于快照集成的识别模型准确率较高,为苹果叶部病害程度识别研究提供了参考。
-
单位电子工程学院; 西北农林科技大学