摘要
母线负荷波动性强、易受用户用电行为的影响,接入分布式光伏电源(Distribution Generator,DG)后,其出力波动会进一步增加母线净负荷不确定性。针对此问题,提出以随机森林(Random Forest,RF)作为预测器,分别预测光伏DG出力与母线负荷的母线净负荷预测新方法。文章构建含气象与社会信息等因素在内的高维原始特征集合,并以原始特征集合分别构建光伏DG出力与母线负荷RF预测器。在RF训练过程中,以PI值分析原始特征集合各特征重要度并排序;以不同维度特征子集RF模型预测准确率作为决策变量,采用前向特征选择法,确定最优特征子集,并构建最优预测器;最后,以母线负荷预测值减去光伏DG出力获得母线净负荷预测值。以某地区实际含光伏电源母线数据开展实验,验证了新方法的有效性与先进性。
-
单位东北电力大学; 国网辽宁省电力有限公司经济技术研究院