摘要

为了研究新型电力负荷预测方法,设计了一种基于多列深度神经网络的电力负荷预测模型。在离散数据模式下,使用差值法初步治理,通过小波变换提取其时域特征,傅里叶变换提取其频域特征。对负荷形成的时域、频域特征共8组数据进行多列深度神经网络分析,在此基础上进行一次多列神经网络分析,得到最终的叠加三角函数回归方程。通过仿真分析表明,与多项式曲线估计法和深度迭代模糊矩阵法相比,实现了预测数据质量的显著提升。模型适用于电力负荷预测任务。

  • 单位
    湖北华中电力科技开发有限责任公司