摘要
根据不同产地大豆成分特征含量的差异,提出了一种基于电子舌结合元学习(meta-learning)-卷积神经网络(convolution neural networks, CNN)组合模型实现对大豆产地溯源的快速检测的方法。采用一维卷积神经网络对电子舌信号进行特征提取和分类识别,针对CNN模型难以适应新任务,依赖大量数据训练等问题,采用模型无关元学习算法(model-agnostic meta-learning, MAML)在预训练数据集上对CNN进行预训练,为CNN获得一个全局最优初始化参数。在此基础上,利用微调策略实现对新类别少量样本的快速适应与学习,最后通过模型实现查询样本的分类预测。实验结果表明,模型测试的准确率、召回率、精确率、F1-Score分别达到93.6%、93.8%、93.6%、0.937。研究为大豆产地溯源检测提供了一种快速的检测方法,并为仿生智能感官技术在农产品检测领域提供新的研究思路。
- 单位