摘要
t分布的随机邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)常被用作机床切削状态分类中的特征选择方法,以学习切削参数之间的潜在关系。为了提高切削状态分类的精度,融合振动信号特征与切削激励点的空间坐标,提出了空间坐标嵌入的t分布的随机邻域嵌入方法(spatial coordinate embedded t-SNE, Ct-SNE)。该方法采用振动信号构建高维特征空间,将空间坐标作为物理信息嵌入至特征空间,以优选出类内相似度高、类间差异性大的特征。试验采集了三轴立式铣床加工的数据,对比了传统t-SNE方法与Ct-SNE方法的可视化结果和切削状态分类的准确性。结果表明,与传统方法相比,切削激励点的空间坐标的引入可以提高振动特征的可区分度,显著提升切削状态分类的准确率。
-
单位中国科学院; 中国科学院大学