摘要

植被含水量是植被生长状态的重要指示因子,是农业、生态和水文等研究中的重要参数,其诊断对于监测自然植被群落的干旱状况、预报森林火灾等都具有重要意义。通过对植被光谱反射率与植被含水量的相关性分析,发现植被波谱不同波段的光谱反射率与植被含水量的相关性差异很大,其中可见光红光波段(620700 nm)、近红外波段(8001 350,1 6001 950,2 2002 400 nm)的光谱反射率与植被含水量具有较好的相关性,选取了660,850,1 630和2 200 nm的光谱反射率作为RED,NIR,SWIR1和SWIR2的波段值来建立角度斜率指数;分析了植被含水量与角度斜率指数的关系,将角度斜率指数(SANI,SASI,ANIR)作为反演植被含水量的参量,建立植被含水量与角度斜率指数之间线性回归模型。通过对近红外角度指数ANIR改进,提出了近红外角度归一化指数NANI(near infrared angle normalized index)与近红外角度斜率指数NASI(near infrared angle slope index),建立植被含水量与NANI和NASI之间线性回归模型,结果显示:NANI与Palacios-Orueta等提出的角度斜率指数(SANI,SASI,ANIR)相比有一定的优势,模型可决系数R2从原最高0.791提高到0.853,RMSE也从原最小0.047降低到0.039。确定了NANI为反演植被含水量的最佳角度斜率指数,并建立了植被含水量反演模型。该研究主要创新点:在前人研究成果基础上,通过对原角度斜率指数的改进,提出了NANI和NASI角度斜率指数,使其在植被含水量反演上具有更高的精度。