摘要
提出一种基于深度学习的风机叶片复杂场景检测与分析方法,为了解决弱监督目标定位算法中,目标定位区域不完整,定位区域中背景内容过多的问题,提出了一种应用在风机叶片复杂场景检测,基于自适应特征矫正的弱监督定位算法。该方法引入了自适应特征矫正模块,首先将输入的特征按通道分组,每组特征按照通道平均分为两部分,对这两部分特征分别使用空间注意力机制和改进的通道注意力机制,之后对两部分特征做拼接操作,最终对各组拼接后的特征做通道随机混合操作。在CUB目标定位数据集上对比验证了方法的有效性。实验结果表明,提出方法较基于自适应注意力增强的弱监督目标定位算法能够得到更加准确的目标区域。
- 单位