摘要
高寒湿地是青藏高原典型独特的生态系统,是全球气候变化的敏感地带和预警区。利用遥感技术快速、准确地分类提取高寒湿地的土地覆盖信息,对当地生态安全监测和保护具有重要意义。本文以若尔盖湿地国家级自然保护区为研究区,首先,以高分一号(GF-1)遥感影像为数据源,融合光谱特征、水体指数、地形特征、植被指数和纹理信息等26个变量进行随机森林(Random forest,RF)分类实验;然后,根据袋外数据(Out of bag,OOB)的特征变量重要性得分和精度评价结果,选出高寒湿地地区土地覆盖类型的最优分类方案和特征;最后,对特征变量进行降维,并基于相同的变量,采用极大似然法(Maximum likelihood classification,MLC)、支持向量机(Support vector machine,SVM)、人工神经网络(Artificial neural network,ANN)和RF等方法进行分类,比较不同方法的优适性。结果表明:结合GF-1影像光谱、水体、植被、纹理特征和地形信息,使用26个变量的RF模型的分类精度最高,总体精度(Overall accuracy,OA)为90.07%,Kappa系数为0.86;通过RF模型的变量重要性分析可以有效选出重要的特征信息,在降低特征变量维度的同时,还能保证较高的分类精度; 4种分类方法中,RF算法是高寒湿地地区较合适的分类方法,OA比MLC基准方法高17.63个百分点,比SVM和ANN等机器学习算法分别高6.98、6.56个百分点。
-
单位兰州大学; 草地农业科技学院; 草地农业生态系统国家重点实验室