针对当前输电线路故障分类识别方法存在的阈值整定复杂、人工智能算法可解释性不足等问题,提出了一种基于深度字典学习的输电线路故障分类方法。该方法利用稀疏性约束驱动字典自动提取样本中的故障特征,同时深度字典结构使得所提取的故障特征具有较好的层次性和物理含义,符合人对故障的直观认识,一定程度上解决了数据驱动型方法可解释性不足的问题。最后,通过PSCAD/EMTDC仿真验证了所提方法的有效性。