摘要

由于开源性和开放性,安卓系统成为恶意软件攻击的热门目标,当前有大量针对安卓恶意软件检测的研究,其中机器学习算法得到广泛应用.通过对比在不同模型下将恶意软件转化为灰度图像和RGB图像的准确率,发现转化为RGB图像时恶意软件检测准确率更高,并使用自然语言处理中表现突出的Transformer算法对安卓软件classes.dex文件转换的RGB图像进行恶意软件多分类检测,结果发现与CNN,VGG等传统检测模型相比,使用基于Transformer的检测模型准确率更高.

  • 单位
    北京电子科技学院