摘要

钛板电涡流成像检测易受工业现场中的噪声影响,包含噪声的检测图像往往难以提取较好的特征,从而影响分类识别精度。针对以上问题,提出了一种基于栈式稀疏降噪自编码(SSDAE)深度神经网络的钛板缺陷电涡流检测图像分类方法。将稀疏性限制引入降噪自编码器并进行逐层无监督自学习,然后将自编码器栈式组合后添加逻辑识别(LR)层,构建出SSDAE深度神经网络,网络在有监督微调后可实现钛板缺陷电涡流图像特征自动提取与分类识别。稀疏性限制的引入提高了特征学习能力,降噪自编码器的栈式组合提高了深度网络的鲁棒性。实验结果表明,相比其他常规方法,所提出方法不仅在理想环境下有更高的分类准确率,且该方法能有效抵抗噪声,在复杂工况下能更有效地对钛板缺陷进行分类识别。