现有基于点云与图像融合的行人检测要求高算力的处理平台,应用于低算力低功耗的嵌入式平台时,无法满足行人检测的准确率和实时性。基此提出一种融合点云与图像的道路行人检测方法,该方法采用DBSCAN算法对点云进行聚类,然后,运用概率数据关联算法将行人点云与图像的行人检测结果进行决策级融合,最后,在嵌入式计算平台上进行软硬件集成与测试验证。实验结果表明,相比于其他目标检测算法,设计的融合点云与图像的道路行人检测方法,不仅提高了道路行人方位的检测精度,而且检测用时降低了46.6%以上。