摘要
直升机传动系统故障诊断及预测对提高其运行时的可靠性和安全性具有重要意义。本研究首先采用小波包降噪与局部均值分解相结合的方法提取滚动轴承故障特征,其次用故障样本对设计好的RBF(Radial Basis Function Neural Net-work,简称RBF)诊断网络进行训练,最后利用训练好的RBF网络实现故障的智能诊断。实验结果验证了该方法能够有效地对滚动轴承故障进行分类识别。
- 单位
直升机传动系统故障诊断及预测对提高其运行时的可靠性和安全性具有重要意义。本研究首先采用小波包降噪与局部均值分解相结合的方法提取滚动轴承故障特征,其次用故障样本对设计好的RBF(Radial Basis Function Neural Net-work,简称RBF)诊断网络进行训练,最后利用训练好的RBF网络实现故障的智能诊断。实验结果验证了该方法能够有效地对滚动轴承故障进行分类识别。