摘要

论辩挖掘任务的目标是自动识别并抽取自然语言中的论辩结构,对论辩结构及其逻辑的分析有助于了解论辨观点的成因,因而该任务受到了研究者越来越多的关注,而基于深度学习的模型因其对复杂结构的编码能力及强大的表征能力,在论辩挖掘任务中得到了广泛的应用。该文对基于深度学习的模型在论辩挖掘任务中的应用进行了系统性的综述,首先介绍了论辩挖掘任务的概念、框架及不同领域的数据集,随后,详细描述了深度学习模型是如何被应用于不同的论辩挖掘任务,最后对论辩挖掘任务现有的问题进行了总结并对未来的研究方向进行了展望。

  • 单位
    西湖大学; 新华通讯社