摘要
在无人零售行业的果蔬检测过程中,针对现有检测算法出现的目标漏检、误检和检测速度慢的问题,提出了一种基于深度可分离卷积的改进Faster R-CNN检测算法。该算法首先使用一个与DIOU正相关的惩罚函数对候选框的置信度得分进行惩罚,然后通过对冗余框的加权平均融合候选区域的上下文信息,将算法中的标准卷积替换为深度可分离卷积。实验表明,该算法可有效选择候选区域,降低了目标被漏检和误检的概率,同时提升了算法的检测速度和识别精度,具有重要的理论和应用价值。
-
单位湖北物资流通技术研究所