摘要
传统的基于数据驱动的轴承剩余预测方法仍需要一定的先验知识,比如:特征指标选取、健康指标构建、失效阈值选定等等。预测结果严重依赖人工经验,为了克服这一缺点,基于深度学习方法提出了一种用于轴承剩余寿命预测的新方法,该方法的核心包括健康指标构建和剩余寿命计算。首先提出了一种无需先验知识的基于空间卷积长短时记忆神经网络(Convolutional long short-term memory neural network, ConvLSTM)的健康指标生成网络模型,该网络利用卷积神经网络的局部特征提取能力和长短时记忆网络的时间依赖特性,可直接从采集到的原始信号中挖掘反映退化程度的特征,构建健康指标,实现了高维原始数据向低维特征的映射转化,并利用Sigmoid函数将其归至[0,1]区间内,实现了阈值的统一;然后,利用粒子滤波更新双指数寿命模型,实现剩余寿命结果的输出。利用轴承全寿命试验对所提方法进行了验证,并与其他相关方法进行对比,结果表明本文方法所构建的健康指标具有更好的趋势性、单调性和鲁棒性,同时剩余寿命预测的准确率更高。
- 单位