摘要
烟草是一种成分复杂的天然植物,地理位置、生长条件等外界因素直接影响着烟叶的品质;我国烟叶种植范围十分广泛,每个产区种植的烟叶都有其独特的风格特征,不同产区的烟叶配比对卷烟的质量起着决定性的作用。为实现烟叶产地准确、快速判别,基于近红外光谱(NIRS),采用灰狼算法(GWO)优化的支持向量机(SVM)算法实现烟叶产地鉴别分类。以8个产地的824个烟叶样本为研究对象,基于x-y距离样本集划分(SPXY)方法得到校正集617个和验证集207个样品。首先应用最佳波长筛选方法,如竞争自适应加权采样(CARS)和随机青蛙(RF)算法减少光谱冗余信息,最终从1 609个变量中分别获得141和534个与产地相关的重要变量,并以此输入SVM作为建模数据,接下来在相同搜索范围内比较了粒子群优化算法(PSO)、遗传算法(GA)和GWO对SVM分类模型的优化效果。结果表明,经RF筛选后的光谱变量较CARS具有更好的产地建模性能,其中RF-GWO-SVM对8个产地烟叶的整体判别正确率达到了96.62%,相较于RF-PSO-SVM和RF-GA-SVM正确率更高。同时,RF-GWO-SVM的运行时间分别比RF-PSO-SVM和RF-GA-SVM的运行时间缩短156和131 min, RF-GWO-SVM具有精度更高、寻优速度更快等优点。GWO对于SVM模型参数具有更高效的优化能力,可用于烟叶产地快速鉴别模型的建立。
- 单位