摘要

基于混合高斯模型(Gaussian Mixture Models,GMM)或码书模型(Codebook,CB)的传统背景建模算法和改进后的G-KDE算法被广泛地运用于运动目标检测中,但是在光照突变、非静止背景和运动目标短暂停留再运动的场景中不能正确地检测出运动目标。针对以上问题,提出了一种从静止摄像机的视频序列中检测运动目标的背景减算法。通过统计像素的经历作为时间序列,利用核密度估计判断背景像素是否受到运动目标干扰,使用K-均值聚类算法的两个连续阶段来确定可靠的背景区域,通过像素更新适应渐进的光照变化,提出一种基于对象的背景更新机制适应突然的光照变化以及非静止背景、鬼影等干扰。对实际摄取的视频进行了仿真实验,结果表明该算法比其他三种方法检测运动目标鲁棒性更好,准确性更高。