摘要

行人再识别研究中存在特征判别信息不够丰富的情况,并且遮挡、光照等因素会干扰有效特征的准确提取,对后续相似性度量、度量结果排序等工作都有较大影响。此外,监督学习需要使用标签信息,在面对大型数据集时工作量很大。通过引入无监督学习框架,提出一种粗细粒度判别性特征提取方法。构建基于细粒度和粗粒度特征学习的模型框架,其中包含局部和全局2个分支。在局部分支中,对图像学习到的特征映射提取补丁块,并在未标记数据集上学习不同位置的细粒度补丁特征;在全局分支中,使用无标注数据集的相似度和多样性作为信息来学习粗粒度特征。在此基础上,利用相吸和相斥2个损失函数分别增加类别内相似度和类别间多样性,并结合最小距离准则计算特征之间的相似度,进行无监督的聚类合并。在Market-1501和DukeMTMC-reID数据集上的实验结果表明,该方法对于完成行人再识别任务具有较好的判别性能和鲁棒性,相比所有对比方法的最优结果,其Rank-1指标分别提高5.76%和5.07%,平均精度均值分别提高3.2%和5.6%。

全文