一种基于鲶鱼效应和新型搜索机制的混沌蝙蝠算法

作者:王玉昆; 叶伟; 陈雪波*
来源:南京理工大学学报, 2018, 42(05): 629-636.
DOI:10.14177/j.cnki.32-1397n.2018.42.05.019

摘要

针对蝙蝠算法(BA)收敛速度慢、易早熟、寻优精度差的缺点,该文提出一种基于鲶鱼效应和新型搜索机制的改进的混沌蝙蝠算法。首先采用均匀性更好的Tent混沌序列产生初始种群,以增强初始种群多样性。设计了新型频度和速度更新函数,以更好地调节种群的聚集速度,提高全局搜索能力,缓解局部最优现象。将混沌扰动思想引入蝙蝠算法,提出一种新的局部搜索机制和变步长搜索策略,以提高局部搜索的效率和精度。设计了基于混沌鲶鱼效应的种群激活机制,增强了蝙蝠群体跳出局部最优和加速收敛的能力。典型函数的对比测试结果证明了该算法的有效性。

全文