摘要
针对受环境约束的可重构机械臂系统,提出了一种自适应神经网络模块化力/位置控制方法.利用雅克比矩阵将机械臂末端与环境接触力映射到各关节,将系统动力学模型描述成一组通过耦合力矩相关联的子系统集合,通过控制各子系统的位置和力矩来达到控制末端执行器位置和接触力的目的.利用神经网络估计可重构机械臂系统的非线性项和交联项,通过自适应更新律在线估计神经网络权值函数,并引入滑模控制项补偿估计误差,从而保证闭环系统渐近稳定.最后,在不改变控制器参数的条件下对2个不同构形的2自由度可重构机械臂进行数值仿真,结果验证了所设计控制器的有效性.
-
单位长春工业大学; 中车大连电力牵引研发中心有限公司; 中国科学院自动化研究所; 复杂系统管理与控制国家重点实验室