摘要
中文拼写纠错是一项检测和纠正文本中拼写错误的任务。大多数中文拼写错误是在语义、读音或字形上相似的字符被误用,因此常见的做法是对不同模态提取特征进行建模。但将不同特征直接融合或是利用固定权重进行求和,使得不同模态信息之间的重要性关系被忽略以及模型在识别错误时会出现偏差,阻止了模型以有效的方式学习。为此,提出了一种新的模型以改善这个问题,称为基于文本序列错误概率和中文拼写错误概率融合的汉语纠错算法。该方法使用文本序列错误概率作为动态权重、中文常见拼写错误概率作为固定权重,对语义、读音和字形信息进行了高效融合。模型能够合理控制不同模态信息流入混合模态表示,更加针对错误发生处进行学习。在SIGHAN基准上进行的实验表明,所提模型的各项评估分数在不同数据集上均有提升,验证了该算法的可行性。
- 单位