摘要

针对大多数场景分类方法只能学习浅层特征,忽略图像之间的相关结构信息,提出一种基于Gist特征与卷积神经网络结合的场景图像分类方法。其中Gist特征用于提取场景图像的全局特征,并将其作为深度学习模型的输入,通过逐层训练卷积神经网络,提取更高层次的特征,并用训练好的卷积神经网络进行分类。实验在O&T室外场景图像数据集和MNIST手写体数据集上考察了batchsize、卷积核对分类结果的影响,并与DBN,NN,SVM和CART作为分类器的分类结果进行比较,充分说明了本文方法的有效性。

全文