摘要

联邦学习在不交换本地数据的情况下可以完成多方协作训练,很好地解决了工业物联网领域数据隐私保护及共享问题。但是传统的联邦学习在面对非独立同分布的工业数据时,会因为局部模型更新导致模型的偏移。针对上述问题,提出非独立同分布工业大数据下联邦动态加权学习方法,该方法分为局部更新和全局聚合两个阶段。在局部更新阶段,利用联邦距离算法消除偏移程度过大的局部模型的影响;在全局聚合阶段,提出动态加权算法,动态的给对全局模型更有利的局部数据分配更大的训练权重。该方法既考虑了局部更新导致的模型偏移程度问题,又兼顾了偏移局部模型对全局模型的影响。通过实验验证了该方法在面对非独立同分布的工业数据时具有良好的效果。

全文