摘要

由于朴素贝叶斯算法的特征独立性假设以及传统TFIDF加权算法仅仅考虑了特征在整个训练集的分布情况,忽略了特征与类别和文档之间关系,造成传统方法赋予特征的权重并不能代表其准确性.针对以上问题,提出了二维信息增益加权的朴素贝叶斯分类算法,进一步考虑到了特征的二维信息增益即特征类别信息增益和特征文档信息增益对分类效果的影响,并设计实验与传统的加权朴素贝叶斯算法相比,该算法在查准率、召回率、F1值指标性能上能提升6%左右.

全文