摘要

为了解决车联网(IoV)中因车辆高速移动和拓扑结构多变导致的车辆间数据传输链路不稳定甚至中断的问题,提出一种活跃度感知的社交车辆分簇算法.在簇头(CH)筛选过程中,考虑由相对加速度、速度和相对距离构成的移动相似性分值以及由兴趣相似度定义的社交相似性分值,加权求和得到车辆相似性分值.利用基数排序算法排序并筛选出分值最高者作为簇头候选者(CHc),保证集群的稳定性.引入由车辆历史数据处理量和车辆请求资源次数构成的活跃度的概念,通过对其进行判断,从簇头候选者中筛选出真正有社交意愿和能力的簇头,提升簇内亲密度.使用OMNet++平台进行仿真,结果表明,与传统算法相比,采用所提算法,能使得集群在保持稳定性的同时,亲密度有所提升.