摘要
针对城市车联网中出现的基站覆盖空洞及局部流量过载等问题,提出了一种基于车辆轨迹预测信息的动态预部署方案。首先,为了训练得到统一的seq2seq-GRU轨迹预测模型,多个携带边缘计算服务器的无人机在分布式联邦学习与区块链的架构下去除中心聚合节点,采取改进的Raft算法,在每轮训练中根据贡献数据量的大小,选举得到节点来完成参数聚合及模型更新任务。其次,基于模型预测结果,提出了一种改进的虚拟力向导部署算法,通过各虚拟力来引导无人机进行动态部署以提升车辆的接入率及通信质量。仿真结果表明,提出的训练架构能够加速模型的训练,部署算法在提升车辆接入率的同时提升了车辆与无人机之间的通信质量。
-
单位重庆邮电大学; 通信与信息工程学院