RNA二级结构预测在生物信息学中具有重要意义。本文针对RNA二级结构预测,提出了一种混沌差分进化算法。算法对种群进行混沌初始化,利用混沌扰动产生新的个体,缩小搜索空间;根据个体的适应值和种群密度自适应地对个体进行混沌更新,改善了种群的多样性。该算法充分利用了差分进化算法速度快以及混沌的遍历性、随机性和规律性等特点,有效克服了早熟现象,提高了算法的全局搜索能力。实验证明了算法的有效性。