摘要
游梁式抽油机是有杆泵系统中应用最广泛的部件,分析有杆泵的示功图是判断抽油机井下工况的重要手段。针对传统示功图识别方法存在依靠专家经验以及需要人工进行特征提取,导致出现相似示功图时识别准确度低的问题开展研究。通过深度学习卷积神经网络在图像识别领域的应用,提出了一种基于LeNet的卷积神经网络模型,实现了示功图的自动识别,所搭建的模型在简化模型结构的同时考虑了抽油机常见的15种井下工况,并引入了Dropout层以及局部响应归一化层防止模型过拟合的同时提高模型的泛化能力。实验结果表明,该模型不仅收敛速度快,而且对于工况进行诊断的准确度平均为94.68%,满足抽油机工况检测的诊断精度要求。该研究为抽油机井工况智能监控预警系统的构建提供了依据,对建设智慧油田以及油田的高效生产具有重要意义。
-
单位石油大学机电工程学院