摘要

道路障碍检测是智慧交通和无人驾驶的重要组成部分。针对道路障碍检算法的参数量过大、占用内存过多、难以在内存和算力有限的设备中使用等问题,本文提出一种轻量级的道路障碍检测算法。在YoloV4的基础上,使用MobilenetV3作为模型的主干网络,减少模型参数,提高检测速度;改进模型中的PAN结构,将主干网络中更浅层的特征图提取融合,改善小目标检测不佳的问题;在特征融合部分加入ECA注意力机制提升网络整体精度;提出一个新的DBR模块,使网络整体相比之前更加轻便。使用改进后的模型在自制数据集中进行检测,与Mobilenetv3-YoloV4相比,精度提升5.24%,参数量降低35.5%,FPS达43.8,满足实时应用的技术要求,表明模型可以嵌入到小型移动设备,达到良好的实时效果。

全文