摘要
目前,我国青藏高原地区的牦牛养殖方式以传统的人工放牧为主.为解决人力养殖方式无法快速跟踪统计牦牛数量的问题,本文提出了一种改进YOLOv5和Bytetrack的牦牛跟踪方法,以实现在视频输入情况下快速检测跟踪牦牛.采用基于深度学习的YOLOv5目标检测网络,结合CA注意力、跨尺度特征融合和空洞卷积池化金字塔等优化方法,减少牦牛检测中因遮挡而导致检测难度大、误检漏检的问题,实现对视频中牦牛更精确的检测;使用Bytetrack跟踪器通过卡尔曼滤波和匈牙利算法实现帧间目标关联,并为目标匹配ID;使用ImageNet中的部分牦牛数据和青海玉树地区采集的牦牛样本图像来训练模型.实验结果表明:本文改进模型的平均检测精确度为98.7%,比原YOLOv5s、SSD、YOLOX和Faster RCNN模型分别提高1.1、1.89、8.33、0.4个百分点,能快速收敛,检测性能最优;改进的YOLOv5s和Bytetrack跟踪结果最优, MOTA提高了7.164 6%.本研究改进的模型能够更加快速准确地检测和跟踪统计牦牛,为青海地区畜牧业的智慧化发展提供技术支持.