摘要
模型的效率在计算机视觉中变得越来越重要.本文通过研究用于火焰检测的神经网络结构,提出了几个关键的优化方案,以提高模型效率和检测效果.第一,提出一种由多卷积组合结构构建的主干网络(FIRE-Net),它能高效地从多个尺度上提取丰富的火焰特征;第二,提出一种改进的加权双向特征金字塔网络(BiFPN-mini)以快速地实现多尺度特征融合;第三,提出一种新的注意力机制(FIRE-Attention),让检测器对火焰特征更敏感.基于上述优化,本文开发出了一种全新的火焰检测器FIRE-DET,它在硬件资源有限的条件下能够取得比现有基于深度学习的火焰检测方法更高的检测效率.FIRE-DET模型在自建数据集上进行训练后,最终对火焰检测的准确率和帧率分别达到97%和85 FPS.实验结果表明,与主流算法相比,本文火焰检测模型检测性能更优.本文为解决火焰探测问题提供了一个更通用的解决方案.
-
单位淮阴工学院