摘要

基于BP神经网络模型对黄河源区的降水、温度进行了统计降尺度研究,探讨了统计降尺度模式中考虑预报量的敏感大气环流因子随季节变化时对降水的降尺度效果的影响。结果表明,人工神经网络降尺度模型能成功地捕捉黄河源区的日平均温度及气温极值的年际变化趋势,纳什效率系数均达0.95以上;比较CON模型及PIE模型对降水指标的模拟能力,发现两种模型对1961~2000年不同降水指标时间序列的模拟能力相当;从季节尺度看,在冬季PIE模型显示了更好的模拟能力,但在夏秋季节PIE模型对多数降水指标的模拟能力略不及CON模型。总之,CON模型对降水指标的模拟效果更好。

  • 单位
    河海大学; 水文水资源与水利工程科学国家重点实验室