摘要

互联网技术的飞速发展,推动了传统教育方式的变革,在线教育逐渐成为了人们学习的一种重要方式。然而在线课程种类繁多,用户在学习过程中,往往难以找到符合自身需求的课程。面对信息过载问题,越来越多的研究人员将兴趣投入到在线课程平台的推荐算法中来。在线课程平台常用的协同过滤推荐算法基于用户相近的兴趣进行推荐,然而,忽略了用户学习的时序特征。针对此问题,文章提出一种基于用户点击时序网络嵌入向量(Graph Embedding Vector,GEV)的推荐算法。首先,利用用户的学习记录构造用户点击序列图,然后利用Skip-gram算法和负采样算法学习到课程的嵌入向量表示,最后,通过向量检索的方式为用户生成推荐候选集。实验结果表明,与MF、DeepWalk、协同过滤等传统算法相比较,该算法在MOOC数据集的推荐召回率上均有提升。因此,实验结果证明了利用图嵌入方法获取向量表示进行推荐可以有效提升推荐召回率。