摘要
本文针对农作物病虫害图像识别需求,探索了基于数据增广技术的深度卷积神经网络迁移学习方法及识别模型,将原始样本量扩增至50倍,并通过抑制模型过拟合,从而提升模型的泛化能力和农作物病虫害识别的准确率。同时基于边缘计算理论方法与技术,将识别模型部署到边缘端,设计了基于计算机视觉与边缘计算的智能识别装置,通过该装置实时采集农作物图像,并进行图像推理与识别,解决了农作物病虫害图像识别的实际应用问题。
- 单位
本文针对农作物病虫害图像识别需求,探索了基于数据增广技术的深度卷积神经网络迁移学习方法及识别模型,将原始样本量扩增至50倍,并通过抑制模型过拟合,从而提升模型的泛化能力和农作物病虫害识别的准确率。同时基于边缘计算理论方法与技术,将识别模型部署到边缘端,设计了基于计算机视觉与边缘计算的智能识别装置,通过该装置实时采集农作物图像,并进行图像推理与识别,解决了农作物病虫害图像识别的实际应用问题。