摘要

利用人工智能技术对遥感卫星图像中海域船舶目标识别具有非常重要的现实意义。针对卫星图像中复杂情况对船舶识别带来的干扰,以及小目标船舶高漏检率问题,基于改进R-CNN提出一种细粒度深度学习模型,引入负样本增强学习策略,构建了一种海上船舶识别与分类的深度学习网络。结合试验,与现有成熟的目标识别算法相比,此算法的精确度和召回率都有提高,并且模型具有良好的鲁棒性和适应性。