摘要
基于2.55GHz市区微蜂窝多输入多输出信道实测数据,将机器学习中的最小二乘支持向量机(LS-SVM)算法应用于时变信道参数的建模中,建立了基于遗传算法(GA)优化的LS-SVM信道参数预测模型,对信道参数如时延扩展、接收端的水平角度扩展和垂直角度扩展的数据特征进行了学习,并实现了准确预测;同时通过与反向传播神经网络模型以及传统的LS-SVM模型进行比较,验证了算法的有效性.基于GA优化的LS-SVM模型能够在有限数据量下对信道参数的变化有着良好的适应性,可实现非线性时变信道参数的准确预测.
-
单位电子工程学院; 华北电力大学