摘要

为了进一步提高微粒群定位算法的收敛速度和定位精度,提出了一种采用个体决策思想的微粒群三维定位算法,首先对每个微粒进行评价并分配不同的惯性权重,然后利用个体历史位置及其适应值信息进一步优化每个微粒的个体历史最优位置,弥补了微粒群算法对个体历史经验信息利用不足的缺陷。仿真结果表明,改进算法能够以更高的精度和较少的迭代次数定位未知节点,与标准微粒群定位算法和典型的定位算法相比表现出了较好的性能。