摘要
随着无人机技术在军事、民用等领域的广泛运用,高精度、低功耗智能无人机跟踪系统的需求也日益增多。针对无人机跟踪任务中目标尺度变化大、视野角度多变、遮挡等问题,提出了一种基于轻量级Siamese注意力网络的无人机实时跟踪算法。首先,选取易于部署在嵌入式设备中的轻量级卷积神经网络MobileNetV2作为特征提取主干网络;接着,设计通道空间协同注意力模块,增强模型的适应能力与判别能力;然后,搭载区域建议网络,通过互相关获取前景背景分类和边界框回归响应图;最后,加权融合多层响应图,调整候选区域筛选策略,计算得到更加准确的跟踪结果。在无人机跟踪数据集上的仿真实验结果表明,相对于当前主流算法SiamRPN,该算法跟踪精度提升了3.5%,能更好地应对复杂多变的场景。同时,在NIVIDA RTX 2060 GPU上,跟踪速度达到60 frame/s。
- 单位