DMGA-FCM:衍生多种群遗传进化的FCM自适应聚类算法

作者:冯志豪; 曹金鑫; 黄嘉爽; 鞠恒荣; 程纯; 丁卫平*
来源:小型微型计算机系统, 2023, 44(10): 2196-2203.
DOI:10.20009/j.cnki.21-1106/TP.2022-0076

摘要

模糊C均值聚类(Fuzzy C-means Clustering, FCM)算法是分析医学数据的重要方法之一,FCM的聚类效果容易受初始聚类中心的影响;诸多研究人员往往采用多种群遗传算法(Multiple Population Genetic Algorithm, MPGA)解决上述问题,但MPGA的全局搜索能力不足并缺少自适应性、易过早收敛、初始聚类中心不佳.为此,本文提出一种DMGA-FCM:衍生多种群遗传进化(DMGA)的FCM自适应聚类算法.在DMGA-FCM中,本文首次提出的衍生算子,对初始化种群进行衍生操作,提升算法寻优能力,处理种群间寻优能力不足;利用模糊控制动态调节遗传概率,以提升算法自适应性,进而增强DMGA算法全局寻优能力,避免过早收敛;用DMGA优化FCM算法的初始聚类中心,以提升算法聚类效果.在仿真实验中,本文将该算法与其他相关FCM算法进行对比,可得到更优的医疗数据聚类效果和图像聚类分割效果.

全文