摘要

在当前水质数据急剧增加的背景下,为了挖掘水质时间序列中的更多信息,提升水质预测的精度,构建了基于缺失值填补算法和长短时记忆网络(LSTM)相结合的水质预测模型。通过缺失值填补算法进行水质数据的缺失值处理,利用LSTM网络分别构建不同水质参数的预测模型,以太湖水质监测数据为样本,对模型进行检验。结果表明,基于缺失值填补算法-LSTM的水质预测模型适应性强,相较传统SVM、BP神经网络、RNN、LSTM模型预测精度更高,对水环境保护具有重要意义。