摘要

为提升自相关过程监控的效率,提出基于门控循环单元(gated recurrent unit,GRU)神经网络的自相关过程残差控制图。采用受控下的自相关过程数据对GRU网络进行离线训练与测试,对预测误差进行监控,形成控制用残差控制图。采用训练好的GRU网络预测当前过程波动,利用控制用残差控制图判定当前过程是否失控。运用蒙特卡洛仿真法,与基于一阶自回归模型、BP神经网络以及支持向量回归构建的残差控制图进行性能对比。研究表明,过程受控时,所提残差控制图与其他3种的稳态平均运行链长相差不大,即4者的性能表现相当;而在均值偏移异常过程中,所提残差控制图的平均运行链长远小于其他3种,对自相关过程均值偏移具有较好的监控性能。