摘要
目的 探讨基于深度学习(DL)的乳腺X线摄影肿块检测系统的临床应用价值。资料与方法 回顾性分析2019年4—12月深圳市人民医院1 755例接受乳腺X线摄影检查的患者资料。由DL系统和2名初级职称医师采用盲法独立阅片,比较DL系统与2名医师对肿块病灶检出的敏感度,并分析患者年龄、乳腺密度分类、乳腺影像报告和数据系统分类、肿块形态、边缘、密度、大小对于DL系统及2名初级职称医师肿块检出准确度的影响。结果 共检出肿块324例(618个肿块),2名医师及DL系统分别检出肿块277例(519个肿块)、268例(482个肿块)、284例(533个肿块)。DL系统及2名医师对于肿块检出的敏感度分别为86.25%、83.98%、77.99%,DL系统对于不同乳腺密度分类的肿块检出差异无统计学意义(χ2=3.04,P>0.05),而2名医师的差异有统计学意义(χ2=9.39、8.96,P<0.05)。DL系统对于不同患者年龄、肿块形态、边缘、密度、大小及乳腺影像报告和数据系统分类的肿块检出差异均有统计学意义(χ2=15.28、41.70、58.67、53.22、28.83、53.75,P<0.05)。结论 基于DL的乳腺X线摄影肿块检测系统对肿块病变检测不受乳腺密度的影响,可辅助医师减少因腺体致密造成的肿块漏诊。
- 单位