摘要
通过可见/近红外光谱技术结合K最近邻法回归、随机森林回归、深度卷积神经网络及带有残差块的深度卷积神经网络4种化学计量学方法对不同糖度的西瓜进行定量判别,并借鉴适用于图像处理的深度网络模块对可见/近红外光谱进行建模。结果表明,深度学习网络模块一维化在可见/近红外光谱数据处理中体现了巨大潜力,卷积神经网络CNN模型在预测集中Rp为0.855 9,RMSEP为0.778 1°Brix,加入Res-block后的改进卷积神经网络Res-CNN在预测集中Rp为0.893 2,RMSEP为0.710 4°Brix。
-
单位福建农林大学; 机电工程学院