摘要
提出一种基于局部均值分解(Local Mean Decomposition,LMD)和遗传神经网络自适应增强(Genetic Neural Network Adaptive Boosting,GNN-Adaboost)的滚动轴承损伤程度识别方法。通过LMD方法将轴承振动信号分解为若干个瞬时频率有物理意义的乘积函数(Production Function,PF),对能反映信号主要特征的PF提取能量矩,结合原始振动信号的时域特征参数(方差、偏度、峭度),组成故障严重程度识别特征参数矩阵。将基于LMD方法的特征参数矩阵作为GNN-Adaboost方法的输入向量,对不同载荷与转速工况下的轴承进行故障严重程度识别。结果表明,基于LMD和GNN-Adaboost的方法能够有效提高轴承故障严重程度识别准确率,对滚动轴承等关键旋转部件的故障识别与定位具有重要意义。
-
单位北京卫星制造厂有限公司