摘要
针对多数卷积神经网络模型计算资源消耗多、占用内存大等问题,提出了一种基于轻量化卷积神经网络的番茄病害图像识别方法FTL-MobileNet。该模型通过引入Focal Loss代替交叉熵损失函数(Cross Entropy Loss),聚焦于难分类的样本,接着在全连接层添加Dropout层,防止过拟合,将MobileNetV2在ImageNet训练好的权重参数迁移到改进模型中。选用常见的几种网络模型进行对比实验。结果表明,FTL-MobileNet相比于其他模型收敛更快、泛化能力更好、单张图片识别耗时更低、识别精度更高,在测试集上的平均准确率达到了99.87%,且训练好的模型仅8.74 MB。
- 单位