摘要

针对地形复杂区域构建GNSS高程异常拟合模型精度有限的问题,本文提出了一种基于爬行动物搜索算法(RSA)优化BP神经网络的方法。利用RSA对传统BP神经网络各层之间神经元的权值和阈值全局寻优,解决BP神经网络局部极值、梯度下降等问题;同时,选取三等水准测量精度以上的加密网点高程数据作为样本集,使用RSA-BP神经网络学习与训练。与最小二乘支持向量机、多面函数拟合性能对比,RSA-BP神经网络模型拟合精度最高,稳定性最好,与实际高程异常值最为吻合。

全文