摘要

针对辐射源识别中的特征稳定性不高和低信噪比环境适应性不足等问题,提出了一种基于二次时频分布、核协同表示与鉴别投影的识别方法.首先,通过时频变换、稀疏域降噪和二次特征提取的预处理算法降低噪声干扰和特征冗余,以获取高稳定性的二次时频分布特征;然后,采用核协同表示和鉴别投影思想进行降维学习和字典学习,以提升数据低维表征和类间鉴别能力;最后,通过离线训练完成系统优化并用于分类验证.仿真结果表明,二次时频分布特征具备较高稳定性,识别方法具备较强鲁棒性、时效性和适应性;当信噪比为-10dB时,该方法对8类辐射源信号的整体平均识别率达到96.88%.

  • 单位
    中国人民解放军空军预警学院