摘要

为了解决目前肝脏肿瘤病理分级主要依靠穿刺活检、手术病理取材等侵入式方法的问题,提出了一种在非增强核磁共振图像(MRI)上进行肝脏肿瘤病理分级的定量分析方法。首先对采集到的MRI图像,由医生在专业软件中人工分割出病灶部位,对这些病灶部位提取高通量的328维图像特征,包括灰度、形状、纹理、小波等特征,利用最小绝对收缩和选择运算符(LASSO)和交叉验证方法从中挑选出对病理分级最有价值的特征,组成影像组学模型并融合临床信息实现对肿瘤高、低分化分类的定量分析。在170位肝脏肿瘤患者的MRI图像(T1加权图像和T2加权图像)上进行实验,通过计算接收者操作特征(ROC)曲线下面积(AUC)来衡量模型的预测性能。结果表明,基于高通量图像特征的LASSO回归定量分析方法,在训练集上获得AUC为0.909,在测试集上AUC为0.800。挑选出来的图像特征组成的影像学标签可以对高、低分化进行自动分类,从而为医生提供了一种非侵入的辅助诊断方法,有助于预后判断和治疗方案的制定。

  • 单位
    河南省人民医院; 信息工程大学